
AUGUST 2007 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

Note that [0, 1] is compact, so consider⋃
x∈[0,1]

Ix ⊃ [0, 1]

By compactness we may extract a finite subcover {Ix1 , . . . , Ixk}. Let

ε > 0; for each i = 1, . . . , k, there exists Ni ∈ N such that for all

x ∈ Ixi ,

|fn(x)− f(x)| < ε

for all n > Ni. Take N := maxi{Ni}. For all x ∈ [0, 1], by construction

we have that

|fn(x)− f(x)| < ε

whenever n > N ¡ whence fn → f uniformly.

2. Problem 2

(a). If f is integrable, this is trivial by Lebesgue’s dominated conver-

gence theorem. Assume then that f is not integrable. We may extract

a subsequence fnk
increasing to f , so that by Lebesgue’s monotone

convergence theorem, ˆ
fnk

dµ→
ˆ
f =∞
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Now, choose an arbitrary subsequence. We may extract a further sub-

sequence that is increasing to f , and by the same logic above, this

sub-subsequence must converge to
´
f . Then, this shows that every

subsequence has a further subsequence converging to f , which is equiv-

alent to saying
´
fn →

´
f .

(b). If
´
f < ∞, this is trivially true. Consider now fn := χ[−n,n].

Then, fn → 1 everywhere, but,

ˆ
1− fndµ =∞

for all n.

3. Problem 3

Define f(x) := x2. Then, f(A) = A2. Let δ > 0. As m(A) = 0, we

may find a sequence of open intervals {(ak, bk)} with

A ⊂
∞⋃
k=1

(ak, bk), m
( ∞⋃
k=1

(ak, bk)
)
< ε

As f is continuous and surjective onto its image, every compact subset

K ′ of f(A) is the image of some compact subset K of A.

Then, by compactness we may select a finite subcover {(ak1 , bk1), . . . , (akn , bkn)}

of K, so that

f(K) = K ′ ⊂ni=1 f(aki , bki)

Let ε > 0. Since f is absolutely continuous with bounded derivative

on every compact subset, we may reselect δ such that

n∑
i=1

bki − aki < δ =⇒
n∑
i=1

|f(bki)− f(aki)| < ε
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As ε is arbitrary, we deduce that every compact subset of m(f(A)) has

measure 0, whence

m(f(A)) = sup
K⊂f(A) cpt

{m(K)} = 0

as contended.

4. Problem 4

(a). Let ε > 0. Set M1 := maxx∈[a,b] |f(x)|, M2 := maxx∈[a,b] |g(x)|. We

choose choose δ1, δ2 such that

N∑
k=1

bk − ak < δ1 =⇒
N∑
k=1

|f(bk)− f(ak)| <
ε

2(M2 + 1)

N∑
k=1

bk − ak < δ1 =⇒
N∑
k=1

|g(bk)− g(ak)| <
ε

2(M1 + 1)

Choose δ := min{δ1, δ2}. Then, whenever

N∑
k=1

bk − ak < δ

we have

N∑
k=1

|f(bk)g(bk)− f(ak)g(bk)| 6
N∑
k=1

|f(bk)g(bk)− f(ak)g(ak)|

+
N∑
k=1

|f(ak)g(bk)− f(ak)g(ak)|

6M2 ·
N∑
k=1

|f(bk)− f(ak)|+M1 ·
N∑
k=1

|g(bk)− g(ak)|

<
M2ε

2(M2 + 1)
+

M1ε

2(M1 + 1)

< ε

So that f · g is absolutely continuous.
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(b). Since f · g is absolutely continuous by part (a), we have

f(b)g(b)− f(a)g(a) =

ˆ b

a

(f · g)′(x)dx

=

ˆ b

a

f ′(x)g(x)dx+

ˆ b

a

f(x)g′(x)dx

=⇒
ˆ b

a

f ′(x)g(x)dx = f(b)g(b)− f(a)g(a)−
ˆ b

a

f(x)g′(x)dx

As desired.

5. Problem 5

Note that for 1
p

+ 1
q

= 1,

lim
n→∞

ˆ ∞
1

fn(x)

x
dx 6 lim

n→∞

(ˆ ∞
1

1

xq
dx
)1/q(ˆ ∞

1

|fn|pdx
)1/p

(Hölder’s)

= lim
n→∞

1

(1− q)1/q
||fn||p

=
1

(1− q)1/q
||f ||p

Since fn → f and f ∈ Lp(1,∞), ||fn||p is a bounded sequence so that

fn 6 sup
n
fn ∈ Lp(1,∞)

So that by Lebesgue’s dominated convergence theorem,

lim
n→∞

ˆ ∞
1

fn(x)

x
dx =

ˆ ∞
1

f(x)

x
dx

6. Problem 6

(a). We use Wirtinger derivatives for convenience. As f is holomor-

phic, ∂f
∂z

= 0. This implies that ∂f(z)
∂z

= 0, in which case

∂

∂z
(f(z)) =

∂f(z)

∂z
= 0

So that f(z) is holomorphic.
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(b). Note that f(1/n) = f(1/n), so that

g(z) := f(z)− f(z)

is holomorphic by part (a). By the identity principle, since g is 0

on a set with an accumulation point, we deduce that g(z) ≡ 0. For

−1 < z < 1, we have that z ∈ R so that

f(z) = f(z)

Whence f(z) ∈ R, as contended.

7. Problem 7

Note

ˆ ∞
−∞

cos(x)

ex + e−x
dx = Re

ˆ ∞
−∞

eix

ex + e−x
dx

Consider the contour given in the problem statement, which we will

denote by C. The only pole contained in this region is at z = iπ/2.

We also see that, by definition of C:

ˆ
C

eiz

ez + e−z
dz =

ˆ π

0

eiR−t

eR+it + e−R−it
dt

+

ˆ π

0

e−iR−t

e−R+it + eR−it
dt

+

ˆ R

−R

eix

ex + e−x
dx

+

ˆ R

−R

eix−π

ex+iπ + e−x−iπ
dx
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Note first that

Res
( eiz

ez + e−z
, iπ/2

)
= lim

z→iπ/2
(z − iπ/2)

eiz

2 cosh(z)

=
e−π/2

2 sinh(iπ/2)

=
−ie−π/2

2 sin(π/2)

=
−ie−π/2

2

So that by Cauchy’s residue theorem,
ˆ
C

eiz

ez + e−z
dz = πe−π/2

Letting R→∞,

lim
R→∞

ˆ π

0

|eiR+t|
|e−R+it + eR−it|

dz 6 lim
R→∞

πeπ

eR − e−R

= 0

Similarly,

lim
R→∞

ˆ π

0

|eiR−t|
|e−R+it + eR−it|

dz 6 lim
R→∞

π

eR − e−R

= 0

And,

lim
R→∞

ˆ R

−R

eix

ex + e−x
dx =

ˆ ∞
−∞

eix

ex + e−x
dx

So that combining all of the above, we are left with:

(1 + e−π)

ˆ ∞
−∞

eix

ex + e−x
dx = πe−π/2

=⇒
ˆ ∞
−∞

eix

ex + e−x
dx =

π

eπ/2 + e−π/2

And, taking the real part we are left with
ˆ ∞
−∞

cos(x)

ex + e−x
dx =

π

2 cosh(π/2)
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8. Problem 8

We have uncountably many a ∈ BR(0), implying that for some n ∈

N, f (n)(a) = 0 for uncountably many a ∈ BR(0), since N is countable.

Consider now f (n)(z). If f (n)(z) is nonzero, then by holomorphicity

its zeroes are isolated. But then there can only be countably many

zeroes of f (n), since any set of isolated points in C is countable1.

Thus, f (n)(z) = 0 for all z ∈ BR(0), whence f (k)(z) = 0 for all k > n,

and we deduce that f is a polynomial of degree n− 1.

9. Problem 9

(a). True. We may write f = g − h for g and h both monotone in-

creasing functions. By monotonicity, the right limits of g and h exist,

so the right limit of f exists.

(b). False. Let fn := nχ[0,1/n]. Then, fn → 0 almost everywhere, but
ˆ
fn = 1 > 0 =

ˆ
0

(c). False. The Cantor function is the counterexample, as it is continu-

ous on a compact set, hence uniformly continuous. It is also a standard

fact that it is of bounded variation. However, f 6=
´
f ′, in which case

f is certainly not absolutely continuous.

(d). False. Hadamard’s theorem gives that the radius convergence is

1/2. However, being holomoprhic on the unit disk implies radius of

convergence > 1.

1A quick way to see this is cover all isolated points by disjoint open neighbor-
hoods. From each neighborhood, choose some rational coordinate. This induces an
injection into Q×Q, which is countable, so the set of isolated points is countable.
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(e). True. This follows by the Casorati-Weierstrass theorem, which

gives that for all ε > 0, g(Bε(0)\{0}) is dense in C. By continuity

and surjectivity of the exponential function, the image of g(Bε(0)\{0})

remains dense in C for every ε > 0. The only class of singularity with

this property is an essential singularity, so that eg must also have an

essential singularity at 0.


