

# AUGUST 2007 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

## 1. PROBLEM 1

Note that  $[0, 1]$  is compact, so consider

$$\bigcup_{x \in [0,1]} I_x \supset [0, 1]$$

By compactness we may extract a finite subcover  $\{I_{x_1}, \dots, I_{x_k}\}$ . Let  $\epsilon > 0$ ; for each  $i = 1, \dots, k$ , there exists  $N_i \in \mathbb{N}$  such that for all  $x \in I_{x_i}$ ,

$$|f_n(x) - f(x)| < \epsilon$$

for all  $n > N_i$ . Take  $N := \max_i \{N_i\}$ . For all  $x \in [0, 1]$ , by construction we have that

$$|f_n(x) - f(x)| < \epsilon$$

whenever  $n > N$ ; whence  $f_n \rightarrow f$  uniformly.

## 2. PROBLEM 2

(a). If  $f$  is integrable, this is trivial by Lebesgue's dominated convergence theorem. Assume then that  $f$  is not integrable. We may extract a subsequence  $f_{n_k}$  increasing to  $f$ , so that by Lebesgue's monotone convergence theorem,

$$\int f_{n_k} d\mu \rightarrow \int f = \infty$$

---

*Date:* December 26, 2017.

Now, choose an arbitrary subsequence. We may extract a further subsequence that is increasing to  $f$ , and by the same logic above, this sub-subsequence must converge to  $\int f$ . Then, this shows that every subsequence has a further subsequence converging to  $f$ , which is equivalent to saying  $\int f_n \rightarrow \int f$ .

(b). If  $\int f < \infty$ , this is trivially true. Consider now  $f_n := \chi_{[-n,n]}$ . Then,  $f_n \rightarrow 1$  everywhere, but,

$$\int 1 - f_n d\mu = \infty$$

for all  $n$ .

### 3. PROBLEM 3

Define  $f(x) := x^2$ . Then,  $f(A) = A^2$ . Let  $\delta > 0$ . As  $m(A) = 0$ , we may find a sequence of open intervals  $\{(a_k, b_k)\}$  with

$$A \subset \bigcup_{k=1}^{\infty} (a_k, b_k), \quad m\left(\bigcup_{k=1}^{\infty} (a_k, b_k)\right) < \epsilon$$

As  $f$  is continuous and surjective onto its image, every compact subset  $K'$  of  $f(A)$  is the image of some compact subset  $K$  of  $A$ .

Then, by compactness we may select a finite subcover  $\{(a_{k_1}, b_{k_1}), \dots, (a_{k_n}, b_{k_n})\}$  of  $K$ , so that

$$f(K) = K' \subset_{i=1}^n f(a_{k_i}, b_{k_i})$$

Let  $\epsilon > 0$ . Since  $f$  is absolutely continuous with bounded derivative on every compact subset, we may reselect  $\delta$  such that

$$\sum_{i=1}^n b_{k_i} - a_{k_i} < \delta \implies \sum_{i=1}^n |f(b_{k_i}) - f(a_{k_i})| < \epsilon$$

As  $\epsilon$  is arbitrary, we deduce that every compact subset of  $m(f(A))$  has measure 0, whence

$$m(f(A)) = \sup_{K \subset f(A) \text{ cpt}} \{m(K)\} = 0$$

as contended.

#### 4. PROBLEM 4

(a). Let  $\epsilon > 0$ . Set  $M_1 := \max_{x \in [a,b]} |f(x)|$ ,  $M_2 := \max_{x \in [a,b]} |g(x)|$ . We choose choose  $\delta_1, \delta_2$  such that

$$\sum_{k=1}^N b_k - a_k < \delta_1 \implies \sum_{k=1}^N |f(b_k) - f(a_k)| < \frac{\epsilon}{2(M_2 + 1)}$$

$$\sum_{k=1}^N b_k - a_k < \delta_1 \implies \sum_{k=1}^N |g(b_k) - g(a_k)| < \frac{\epsilon}{2(M_1 + 1)}$$

Choose  $\delta := \min\{\delta_1, \delta_2\}$ . Then, whenever

$$\sum_{k=1}^N b_k - a_k < \delta$$

we have

$$\begin{aligned} \sum_{k=1}^N |f(b_k)g(b_k) - f(a_k)g(a_k)| &\leq \sum_{k=1}^N |f(b_k)g(b_k) - f(a_k)g(b_k)| \\ &\quad + \sum_{k=1}^N |f(a_k)g(b_k) - f(a_k)g(a_k)| \\ &\leq M_2 \cdot \sum_{k=1}^N |f(b_k) - f(a_k)| + M_1 \cdot \sum_{k=1}^N |g(b_k) - g(a_k)| \\ &< \frac{M_2 \epsilon}{2(M_2 + 1)} + \frac{M_1 \epsilon}{2(M_1 + 1)} \\ &< \epsilon \end{aligned}$$

So that  $f \cdot g$  is absolutely continuous.

(b). Since  $f \cdot g$  is absolutely continuous by part (a), we have

$$\begin{aligned} f(b)g(b) - f(a)g(a) &= \int_a^b (f \cdot g)'(x)dx \\ &= \int_a^b f'(x)g(x)dx + \int_a^b f(x)g'(x)dx \\ \implies \int_a^b f'(x)g(x)dx &= f(b)g(b) - f(a)g(a) - \int_a^b f(x)g'(x)dx \end{aligned}$$

As desired.

## 5. PROBLEM 5

Note that for  $\frac{1}{p} + \frac{1}{q} = 1$ ,

$$\begin{aligned} \lim_{n \rightarrow \infty} \int_1^\infty \frac{f_n(x)}{x} dx &\leq \lim_{n \rightarrow \infty} \left( \int_1^\infty \frac{1}{x^q} dx \right)^{1/q} \left( \int_1^\infty |f_n|^p dx \right)^{1/p} \quad (\text{Hölder's}) \\ &= \lim_{n \rightarrow \infty} \frac{1}{(1-q)^{1/q}} \|f_n\|_p \\ &= \frac{1}{(1-q)^{1/q}} \|f\|_p \end{aligned}$$

Since  $f_n \rightarrow f$  and  $f \in L^p(1, \infty)$ ,  $\|f_n\|_p$  is a bounded sequence so that

$$f_n \leq \sup_n f_n \in L^p(1, \infty)$$

So that by Lebesgue's dominated convergence theorem,

$$\lim_{n \rightarrow \infty} \int_1^\infty \frac{f_n(x)}{x} dx = \int_1^\infty \frac{f(x)}{x} dx$$

## 6. PROBLEM 6

(a). We use Wirtinger derivatives for convenience. As  $f$  is holomorphic,  $\frac{\partial f}{\partial \bar{z}} = 0$ . This implies that  $\frac{\partial f(\bar{z})}{\partial z} = 0$ , in which case

$$\frac{\partial}{\partial \bar{z}} \overline{(f(\bar{z}))} = \overline{\frac{\partial f(\bar{z})}{\partial z}} = 0$$

So that  $\overline{f(\bar{z})}$  is holomorphic.

(b). Note that  $f(1/n) = \overline{f(\overline{1/n})}$ , so that

$$g(z) := f(z) - \overline{f(\overline{z})}$$

is holomorphic by part (a). By the identity principle, since  $g$  is 0 on a set with an accumulation point, we deduce that  $g(z) \equiv 0$ . For  $-1 < z < 1$ , we have that  $z \in \mathbb{R}$  so that

$$f(z) = \overline{f(\overline{z})}$$

Whence  $f(z) \in \mathbb{R}$ , as contended.

## 7. PROBLEM 7

Note

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{e^x + e^{-x}} dx = \operatorname{Re} \int_{-\infty}^{\infty} \frac{e^{ix}}{e^x + e^{-x}} dx$$

Consider the contour given in the problem statement, which we will denote by  $C$ . The only pole contained in this region is at  $z = i\pi/2$ .

We also see that, by definition of  $C$ :

$$\begin{aligned} \int_C \frac{e^{iz}}{e^z + e^{-z}} dz &= \int_0^\pi \frac{e^{iR-t}}{e^{R+it} + e^{-R-it}} dt \\ &\quad + \int_0^\pi \frac{e^{-iR-t}}{e^{-R+it} + e^{R-it}} dt \\ &\quad + \int_{-R}^R \frac{e^{ix}}{e^x + e^{-x}} dx \\ &\quad + \int_{-R}^R \frac{e^{ix-\pi}}{e^{x+i\pi} + e^{-x-i\pi}} dx \end{aligned}$$

Note first that

$$\begin{aligned}
\text{Res}\left(\frac{e^{iz}}{e^z + e^{-z}}, i\pi/2\right) &= \lim_{z \rightarrow i\pi/2} (z - i\pi/2) \frac{e^{iz}}{2 \cosh(z)} \\
&= \frac{e^{-\pi/2}}{2 \sinh(i\pi/2)} \\
&= \frac{-ie^{-\pi/2}}{2 \sin(\pi/2)} \\
&= \frac{-ie^{-\pi/2}}{2}
\end{aligned}$$

So that by Cauchy's residue theorem,

$$\int_C \frac{e^{iz}}{e^z + e^{-z}} dz = \pi e^{-\pi/2}$$

Letting  $R \rightarrow \infty$ ,

$$\begin{aligned}
\lim_{R \rightarrow \infty} \int_0^\pi \frac{|e^{iR+t}|}{|e^{-R+it} + e^{R-it}|} dz &\leq \lim_{R \rightarrow \infty} \frac{\pi e^\pi}{e^R - e^{-R}} \\
&= 0
\end{aligned}$$

Similarly,

$$\begin{aligned}
\lim_{R \rightarrow \infty} \int_0^\pi \frac{|e^{iR-t}|}{|e^{-R+it} + e^{R-it}|} dz &\leq \lim_{R \rightarrow \infty} \frac{\pi}{e^R - e^{-R}} \\
&= 0
\end{aligned}$$

And,

$$\lim_{R \rightarrow \infty} \int_{-R}^R \frac{e^{ix}}{e^x + e^{-x}} dx = \int_{-\infty}^{\infty} \frac{e^{ix}}{e^x + e^{-x}} dx$$

So that combining all of the above, we are left with:

$$\begin{aligned}
(1 + e^{-\pi}) \int_{-\infty}^{\infty} \frac{e^{ix}}{e^x + e^{-x}} dx &= \pi e^{-\pi/2} \\
\Rightarrow \int_{-\infty}^{\infty} \frac{e^{ix}}{e^x + e^{-x}} dx &= \frac{\pi}{e^{\pi/2} + e^{-\pi/2}}
\end{aligned}$$

And, taking the real part we are left with

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{e^x + e^{-x}} dx = \frac{\pi}{2 \cosh(\pi/2)}$$

## 8. PROBLEM 8

We have uncountably many  $a \in B_R(0)$ , implying that for some  $n \in \mathbb{N}$ ,  $f^{(n)}(a) = 0$  for uncountably many  $a \in B_R(0)$ , since  $\mathbb{N}$  is countable.

Consider now  $f^{(n)}(z)$ . If  $f^{(n)}(z)$  is nonzero, then by holomorphicity its zeroes are isolated. But then there can only be countably many zeroes of  $f^{(n)}$ , since any set of isolated points in  $\mathbb{C}$  is countable<sup>1</sup>.

Thus,  $f^{(n)}(z) = 0$  for all  $z \in B_R(0)$ , whence  $f^{(k)}(z) = 0$  for all  $k > n$ , and we deduce that  $f$  is a polynomial of degree  $n - 1$ .

## 9. PROBLEM 9

(a). True. We may write  $f = g - h$  for  $g$  and  $h$  both monotone increasing functions. By monotonicity, the right limits of  $g$  and  $h$  exist, so the right limit of  $f$  exists.

(b). False. Let  $f_n := n\chi_{[0,1/n]}$ . Then,  $f_n \rightarrow 0$  almost everywhere, but

$$\int f_n = 1 > 0 = \int 0$$

(c). False. The Cantor function is the counterexample, as it is continuous on a compact set, hence uniformly continuous. It is also a standard fact that it is of bounded variation. However,  $f \neq \int f'$ , in which case  $f$  is certainly not absolutely continuous.

(d). False. Hadamard's theorem gives that the radius convergence is  $1/2$ . However, being holomorphic on the unit disk implies radius of convergence  $\geq 1$ .

---

<sup>1</sup>A quick way to see this is to cover all isolated points by disjoint open neighborhoods. From each neighborhood, choose some rational coordinate. This induces an injection into  $\mathbb{Q} \times \mathbb{Q}$ , which is countable, so the set of isolated points is countable.

(e). True. This follows by the Casorati-Weierstrass theorem, which gives that for all  $\epsilon > 0$ ,  $g(B_\epsilon(0) \setminus \{0\})$  is dense in  $\mathbb{C}$ . By continuity and surjectivity of the exponential function, the image of  $g(B_\epsilon(0) \setminus \{0\})$  remains dense in  $\mathbb{C}$  for every  $\epsilon > 0$ . The only class of singularity with this property is an essential singularity, so that  $e^g$  must also have an essential singularity at 0.