AUGUST 2007 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Note that [0, 1] is compact, so consider

U &> 0.1]

z€[0,1]
By compactness we may extract a finite subcover {I,,,..., [, }. Let
€ > 0; for each i« = 1,...,k, there exists N; € N such that for all
x € I,
) — F(@)] < ¢
for all n > N;. Take N := max;{V;}. For all = € [0, 1], by construction

we have that
|fulz) — f(z)] <€
whenever n > Nj whence f, — f uniformly.
2. PROBLEM 2

(a). If f is integrable, this is trivial by Lebesgue’s dominated conver-
gence theorem. Assume then that f is not integrable. We may extract

a subsequence f,, increasing to f, so that by Lebesgue’s monotone

/fnkdu—>/f:oo

convergence theorem,
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Now, choose an arbitrary subsequence. We may extract a further sub-
sequence that is increasing to f, and by the same logic above, this
sub-subsequence must converge to [ f. Then, this shows that every

subsequence has a further subsequence converging to f, which is equiv-

alent to saying [ f, — [ f.

(b). If [ f < oo, this is trivially true. Consider now f, = X[nn-

Then, f, — 1 everywhere, but,

/l—fndp:oo

for all n.

3. PROBLEM 3

Define f(z) := 2. Then, f(A) = A% Let § > 0. As m(A) =0, we
may find a sequence of open intervals {(ay, by)} with
Ac | J(a by, m( U(ak,bk)> <e
k=1 k=1
As f is continuous and surjective onto its image, every compact subset
K’ of f(A) is the image of some compact subset K of A.
Then, by compactness we may select a finite subcover {(ax,, bk, ), - - -, (ag,, bk, )}

of K, so that
fEK) =K' Ciy flak,, b,)

Let € > 0. Since f is absolutely continuous with bounded derivative

on every compact subset, we may reselect § such that

Zbkzz —ag; < 6 = Z |f(bk1) - f(akz)| <€
i=1 =1
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As € is arbitrary, we deduce that every compact subset of m(f(A)) has

measure 0, whence

m(f(A)) = sup {m(K)} =0

KCf(A) cpt

as contended.

4. PROBLEM 4

(a). Let € > 0. Set My := max,cp) | f(2)], Ma := maxgelqy [g(x)]. We

choose choose 01, d5 such that

N N
;bk_ak«sl — ;\ﬂbk)—f(ak)! SOL+1)

N N
€
b, —ap < 6, = br) — < —
kz:; k= ak < 01 ;lg( k) — gak)| 500+ 1)

Choose 6 := min{d, d2}. Then, whenever

N
Zbk—ak <0
k=1

we have
> 1 (be)g (i) — Z — flax)g(a)|
Z — flar)g(ar)|
k=1
Z ak | + M - Z |g bk
]\4]?2?5 M16 -
S30hL+1) T206 1)

<€

So that f - g is absolutely continuous.

g(ar)]
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(b). Since f - g is absolutely continuous by part (a), we have

ﬂ@ﬂw—fmmm%=L?ﬂgﬂ@m:
—/U%) M+/f
=>/f — F(b)g(b) - /f

As desired.

5. PROBLEM 5
1 1 _
Note that for st = 1,

. < fu(z) _ | Vg, [ 1/p )
I e < _ p )
i e < i ([ ) ([ )" oy

) 1
= lim m”fn”iﬂ

1
m“f“p
Since f, — f and f € LP(1,00), || fnllp is & bounded sequence so that

fa <sup f, € LP(1,00)

So that by Lebesgue’s dominated convergence theorem,

Hm/ @) _/ @)

6. PROBLEM 6
(a). We use Wirtinger derivatives for convenience. As f is holomor-
phic, % = 0. This implies that %(j) = 0, in which case

0 e O _
U@ = 5= =0

So that f(Z) is holomorphic.
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(b). Note that f(1/n) = f(1/n), so that

is holomorphic by part (a). By the identity principle, since g is 0
on a set with an accumulation point, we deduce that g(z) = 0. For

—1 < z < 1, we have that z € R so that

f(z) = f(z)

Whence f(z) € R, as contended.

7. PROBLEM 7

Note

/ cos(®) L Re / e
o & te™® e e te™®

Consider the contour given in the problem statement, which we will
denote by C'. The only pole contained in this region is at z = imw/2.
We also see that, by definition of C":

eiz ™ eiR—t
——dz = ———dt
/C e% + e—% 0 eR+it + e—R—it

77,Rt
+/ e R+zt+€R ztdt
R
“/,
e’ +e 9”
+
/ ez+z7r+€ r—iT
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Note first that

¥ iz

e e
R(—,' 2):1' —in/2)—————
S\ rer i/ zalgrl/2<z i/ >2005h(z)
B 6771’/2
~ 2sinh(in/2)
B _Z'efﬂ/2
~ 2sin(1/2)
B _,L'efTr/Z
2
So that by Cauchy’s residue theorem,
/ e—dz = e ™2
C eZ _l’_ €7Z
Letting R — oo,
™ ‘eiR-l-t’ Ter

R—00 0 |67R+’Lt + eszt‘ = R—o0 eR _ e*R

Similarly,

T

iR7t|

lim , —dz < lim —————
R5oo Jo |e~BFit 4 eR-it = Rhoo eR — ¢—R

And,

. R ei:c 0o ei:c
lim ——dr = —dx
R=oo | _p €T L e Tt

So that combining all of the above, we are left with:

(1+ 6_”)/ L
o €t e™”

< e 0
x f:rdx - w/2 —7/2
N em/c+e

And, taking the real part we are left with

/°° cos(x) T
€r =
o €F e 2 cosh(m/2)



AUGUST 2007 ANALYSIS QUALIFYING EXAM 7

8. PROBLEM 8

We have uncountably many a € Bg(0), implying that for some n €
N, f™(a) = 0 for uncountably many a € Br(0), since N is countable.

Consider now f™(z). If f((2) is nonzero, then by holomorphicity
its zeroes are isolated. But then there can only be countably many
zeroes of ) since any set of isolated points in C is countable’.

Thus, f™(z) = 0 for all z € Bg(0), whence f*)(z) = 0 for all k > n,

and we deduce that f is a polynomial of degree n — 1.

9. PROBLEM 9

(a). True. We may write f = g — h for g and h both monotone in-
creasing functions. By monotonicity, the right limits of g and h exist,

so the right limit of f exists.

(b). False. Let f, :== nxp,1/n)- Then, f, — 0 almost everywhere, but

/fn:1>0:/0

(c). False. The Cantor function is the counterexample, as it is continu-
ous on a compact set, hence uniformly continuous. It is also a standard
fact that it is of bounded variation. However, f # [ f', in which case

f is certainly not absolutely continuous.

(d). False. Hadamard’s theorem gives that the radius convergence is
1/2. However, being holomoprhic on the unit disk implies radius of

convergence > 1.

LA quick way to see this is cover all isolated points by disjoint open neighbor-
hoods. From each neighborhood, choose some rational coordinate. This induces an
injection into Q x Q, which is countable, so the set of isolated points is countable.
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(e). True. This follows by the Casorati-Weierstrass theorem, which
gives that for all € > 0, g(B.(0)\{0}) is dense in C. By continuity
and surjectivity of the exponential function, the image of g(B.(0)\{0})
remains dense in C for every € > 0. The only class of singularity with
this property is an essential singularity, so that e must also have an

essential singularity at 0.



